
KTR-N Sheet: 40117 EN 1 of 16

Edition: 1

BoWex ® **FLE-PA** / **FLE-PAC** is a torsionally rigid flange coupling. It is able to compensate for shaft misalignment, for example caused by manufacturing inaccuracies, thermal expansion, etc.

BoWex® FLE-PA

BoWex[®] FLE-PAC

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N 40117 EN Sheet: 2 of 16

Edition: 1

Table of contents

1	Technical data	3
2	Advice	6
	 2.1 Coupling selection 2.2 General advice 2.3 Safety and advice symbols 2.4 General hazard warnings 2.5 Intended use 	6 6 7 7
3	Storage, transport and packaging	7
	3.1 Storage3.2 Transport and packaging	7 7
4	Assembly	8
	 4.1 Types of hubs 4.2 Components of the couplings 4.3 Advice for finish bore 4.4 Assembly of hub 4.5 Assembly of spline hub 4.6 Assembly of clamping hub or clamping hub N 4.7 Assembly of the flange 4.8 Displacements - alignment of the couplings 	8 9 10 10 10 11 12
5	Start-up	14
6	Breakdowns, causes and elimination	15
7	Disposal	16
8	Spares inventory, customer service addresses	16

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:	
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:	

KTR-N 40117 EN Sheet: 3 of 16

Edition: 1

1 Technical data

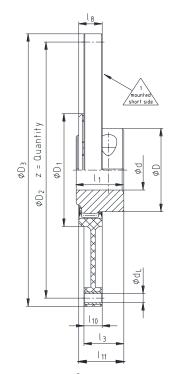
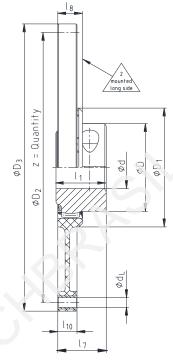



Illustration 1: BoWex® FLE-PA – short mounting

lilustration 2: BoWex® FLE-PA – long mounting

Table 1: Dimensions - BoWex® FLE-PA

Size	Pilot bore	_	re d im]			Dir	nensi	ons [m	ım]			Special length	Nor	minal s	size a	acc. to	SAE (I) 3)
Size	[mm]	min	max	D	D ₁	l ₁	13	I ₇	l ₈	I ₁₀	I ₁₁	[mm] I _{1 max.}	6½"	7½"	8"	10"	11½"	14"
48	-	20	48	68	100	50	41	50	20	13	48	up to 60	•	•	•	•		
T 48	13	20	48	68	100	50	38	45	20	13	46	-	•	•	•	•		
T 55	17	20	55	85	115	50	37	48	24	13	48	-	•	•	•	•		
65 / T 65	21	30	65	96	132	55	45	54	27	21	51	up to 70			•	•	•	
T 70	26	30	70	100	153	60	48	56	30	21	57	-				•		
80 / T 80	31	35	80	124	170	90	78	87	30	21	87	-				•	•	
100 / T 100	38	40	100	152	265	110	78	108	35	21	110	-					•	•
125 / T 125	45	50	125	192	250	140	103	133	50	28	140	-					•	•

Table 2: Technical data - BoWex® FLE-PA

Size	T	orque [Nr	m]	Weight / mass	Hub with	Flange connection according to SAE - J620						
Size	T _{KN}	T _{K max.}	T _{KW}	moment of inertia J	max. bore Ø	6½"	7½"	8"	10"	11½"	14"	
48	240	600	120	[kg]	0.79	0.32	0.43	0.51	0.64			
40	240	600	120	[kgm²]	0.0007	0.0021	0.0035	0.0049	0.0085	•	-	
T 48	300	750	150	[kg]	0.79	0.32	0.43	0.51	0.64		_	
40	300	750	150	[kgm²]	0.0007	0.0021	0.0035	0.0049	0.0085	•	-	
T 55	450	1125	225	[kg]	1.12	0.34	0.62	0.45	0.646			
1 55	450	1123	223	[kgm²]	0.0016	0.0022	0.0053	0.0044	0.0086	•	-	
65	650	1600	325	[kg]	2.30			0.63	0.64	0.89		
03	030	1000	323	[kgm²]	0.0044	-	-	0.0064	0.0065	0.012	-	
T 65	800	2000	400	[kg]	2.40			0.63	0.64	0.89		
1 65	800	2000	400	[kgm ²]	0.0044	-	-	0.0064	0.0065	0.012	-	
T 70	1000	2500	500	[kg]	2.60				0.941			
1 70	1000	2500	500	[kgm²]	0.0059	-	-	•	0.0132	•	•	
90	1200	3000	600	[kg]	5.20				1.05	1.12		
80	1200	3000	600	[kgm²]	0.0151	-	_	-	0.015	0.022	-	

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N A

40117 EN 4 of 16

Edition: 1

1 Technical data

Page 3 continued:

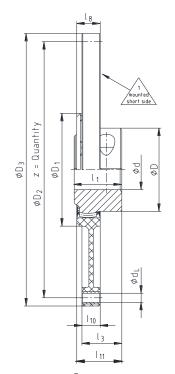


Illustration 1: BoWex® FLE-PA – short mounting

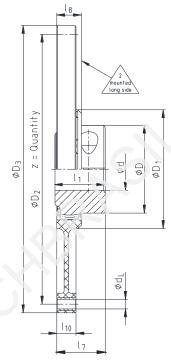


Illustration 2: BoWex® FLE-PA – long mounting

Table 2: Technical data - BoWex® FLE-PA

Size	T	orque [Nr	m]	Weight / mass	Hub with	Flange connection according to SAE - J620							
Size	T _{KN}	T _{K max.}	T _{KW}	moment of inertia J	max. bore Ø	6½"	7½"	8"	10"	11½"	14"		
T 80	1500	3750	750	[kg]	5.20				1.05	1.12			
1 60	1300	3/30	750	[kgm ²]	0.0151		-	•	0.015	0.022	-		
100	2050	5150	1025	[kg]	9.37					1.16	8.45		
100	2030	3130	1023	[kgm²]	0.0401		-	•	-	0.021	0.234		
T 100	2500	6250	1250	[kg]	9.37			_		1.16	8.45		
1 100	2300	6230	1230	[kgm²]	0.0401	-	-	_	-	0.021	0.234		
125	4250	10700	2125	[kg]	19.73					2.09	9.85		
125	4230	10700	2123	[kgm²]	0.1359	-	-	_	-	0.043	0.306		
T 125	5300	13250	2650	[kg]	19.73					2.09	9.85		
1 120	5500	13230	2000	[kgm²]	0.1359	•	-	-	-	0.043	0.306		

In case that a dimensional drawing was prepared for the coupling, the dimensions specified have to be observed primarily.

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N 40117 EN Sheet: 5 of 16

Edition: 1

1 Technical data

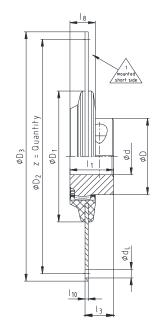


Illustration 3: BoWex® FLE-PAC – short mounting

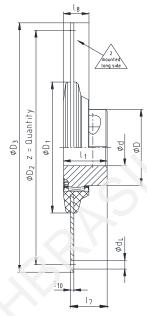


Illustration 4: BoWex® FLE-PAC - long mounting

Table 3: Dimensions – BoWex® FLE-PAC

Size	Pilot	Pilot Bore d [mm]				Dimer	sions	[mm]			Special length	Nominal size acc. to SAE (D ₃) 1)					
Size	[mm]	min	max	D	D ₁	l ₁	13	l ₇	l ₈	I ₁₀	[mm] I _{1 max.}	6½"	7½"	8"	10"	11½"	14"
48 / T 48	13	20	48	68	110	50	35	46	25	3	up to 60	•	•	•	•		
65 / T 65	21	30	65	96	165	55	36	46	32	4	up to 70	•	•	•	•	•	
80 / T 80	31	35	80	124	220	90	72	76	35	4	-				•	•	•
100 / T 100	38	40	100	152	280	110	85	102	47	5	-					•	•
125 / T 125	45	50	125	192	250	140	37	133	50	28	-					•	•

¹⁾ Special flange dimensions available.

Table 4: Technical data - BoWex® Fl.E-PAC

Size	To	orque [Nr	n]	Weight / mass	Hub with		Flang	e connect SAE -	ion accord J620	ling to	
Size	T_KN	T _{K max.}	T_{KW}	moment of inertia J	max. bore Ø	6½"	7½"	8"	10"	11½"	14"
48	240	600	120	[kg]	0.79	0.77	0.98	1.19	1.73		
40	240	300	120	[kgm²]	0.0007	0.0049	0.0077	0.0109	0.0221	-	-
T 48	300	750	150	[kg]	0.79	0.77	0.98	1.19	1.73		
1 40	300	730	130	[kgm²]	0.0007	0.0049	0.0077	0.0109	0.0221	_	-
65	650	1600	325	[kg]	2.30	0.93	1.21	1.48	2.20	2.83	
05	030	1000	323	[kgm²]	0.0044	0.0065	0.0101	0.0145	0.0294	0.0467	-
T 65	800	2000	400	[kg]	2.40	0.93	1.21	1.48	2.20	2.83	_
1 00	000	2000	400	[kgm²]	0.004	0.0065	0.0101	0.0145	0.0294	0.0467	_
80	1200	3000	600	[kg]	5.20				2.27	2.90	5.20
30	1200	3000	000	[kgm²]	0.0151	-	-	-	0.0312	0.0485	0.1462
T 80	1500	3750	750	[kg]	5.20				2.27	2.90	5.20
1 00	1300	3730	750	[kgm²]	0.0151	-	-	-	0.0312	0.0485	0.1462
100	2050	5150	1025	[kg]	9.37		_			3.35	6.22
100	2030	3130	1023	[kgm²]	0.0401	-	-	-	-	0.0606	0.1828
T 100	2500	6250	1250	[kg]	9.37		_			3.35	6.22
1 100	2300	0230	1230	[kgm²]	0.0401	-	-	-	-	0.0606	0.1828
125	4250	10700	2125	[kg]	19.73		_			2.09	9.85
123	4230	10700	2120	[kgm²]	0.1359	_	-	-	_	0.043	0.306
T 125	5300	13250	2650	[kg]	19.73					2.09	9.85
1 123	5500	13230	2000	[kgm²]	0.1359	_	_	-	_	0.043	0.306

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 6 of 16

Edition: 1

1 Technical data

Table 5: Flange dimensions according to SAE J 620

Nominal size			Flange dime	ensions [mm]		
Nominal Size	6½"	7½"	8"	10"	11½"	14"
Dimension D ₃	215.90	241.30	263.52	314.32	352.42	466.72
Dimension D ₂	200.02	222.25	244.47	295.27	333.37	438.15
Quantity z	6	8	6	8	8	8
Dimension d _L	9	9	11	11	11	13

In case that a dimensional drawing was prepared for the coupling, the dimensions specified have to be observed primarily.

2 Advice

2.1 Coupling selection

For a long-lasting and failure-free operation of the coupling it must be selected according to the selection instructions (according to DIN 740 part 2) for the particular application (see catalogue drive technology "BoWex[®] flange couplings").

If the operating conditions (performance, speed, modifications on engine and machine) change, the coupling selection must be reviewed.

The transmissible torque of the shaft-hub-connection must be reviewed by the customer and is subject to his responsibility.

For drives subject to torsional vibrations (drives with cyclic stress due to torsional vibrations) it is necessary to perform a torsional vibration calculation to ensure a reliable selection. Typical drives subject to torsional vibrations are e. g. drives with diesel engines, piston pumps, piston compressors etc. If requested, KTR will perform the coupling selection and the torsional vibration calculation.

2.2 General advice

Please read through these operating/assembly instructions carefully before you start up the coupling. Please pay special attention to the safety instructions!

The operating/assembly instructions are part of your product. Please store them carefully and close to the coupling. The copyright for these operating/assembly instructions remains with KTR.

2.3 Safety and advice symbols

Warning of personal injury

This symbol indicates notes which may contribute to preventing bodily injuries or serious bodily injuries that may result in death.

Warning of product damages

This symbol indicates notes which may contribute to preventing material or machine damage.

General advice

This symbol indicates notes which may contribute to preventing adverse results or conditions.

Warning of hot surfaces

This symbol indicates notes which may contribute to preventing burns with hot surfaces resulting in light to serious bodily injuries.

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet:

40117 EN 7 of 16

Edition: 1

2 Advice

2.4 General hazard warnings

With assembly, operation and maintenance of the coupling it has to be made sure that the entire drive train is secured against accidental switch-on. You may be seriously hurt by rotating parts. Please make absolutely sure to read through and observe the following safety notes.

- All operations on and with the coupling have to be performed taking into account "safety first".
- Switch off the power pack before you perform your work on the coupling.
- Secure the power pack against accidental switch-on, e. g. by providing warning signs at the place of switch-on
 or removing the fuse for current supply.
- Do not reach into the operation area of the coupling as long as it is in operation.
- Please secure the coupling against accidental contact. Please provide for the necessary protection devices and covers.

2.5 Intended use

You may only assemble, operate and maintain the coupling if you

- have carefully read through the operating/assembly instructions and understood them
- · had technical training
- are authorized by your company

The coupling may only be used in accordance with the technical data (see chapter 1). Unauthorized modifications on the coupling design are not admissible. We will not assume liability for any damage that may arise. In the interest of further development we reserve the right for technical modifications.

The **BoWex**[®] described in here corresponds to the technical status at the time of printing of these operating/assembly instructions.

3 Storage, transport and packaging

3.1 Storage

The coupling hubs are supplied in preserved condition and can be stored at a dry and roofed place for 6 - 9 months.

The flange is supplied packed in foil and remains unchanged up to 5 years if stored with package.

The storage rooms must not include any ozone-generating devices like e. g. fluorescent light sources, mercury-vapour lamps or electrical high-voltage appliances. Humid storage rooms are not suitable.

Please make sure that condensation is not generated. The best relative air humidity is less than $65\,\%$.

3.2 Transport and packaging

In order to avoid any injuries and any kind of damage please always make use of proper transport and lifting equipment.

The couplings are packed differently each depending on size, number and kind of transport. Unless otherwise contractually agreed, packaging will follow the in-house packaging specifications of KTR.

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N 40117 EN Sheet: 8 of 16

Edition: 1

4 Assembly

The coupling is generally supplied in individual parts. Before assembly the coupling has to be inspected for completeness.

4.1 Types of hubs

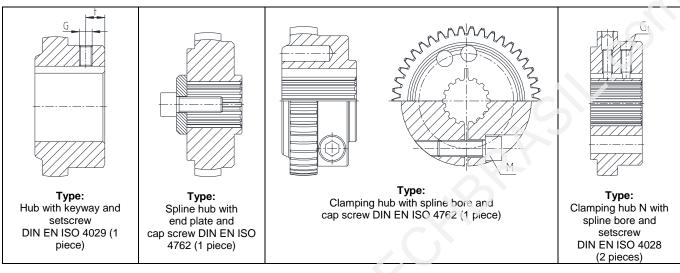


Illustration 5: Types of hubs

4.2 Components of the couplings

Component	Quantity	Description	
1	1	BoWex [®] flange	
2	1	BoWex®hub 1)	
3	1 ²⁾	Setscrew DIN EN ISO 4029 2)	

- 1) Different types of hubs as per illustration 5 are available.
- ²⁾ Each depending on hub type (see illustration 5).

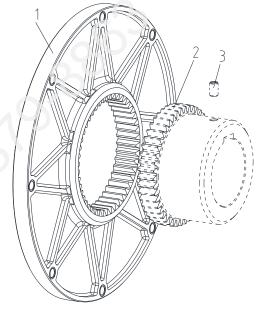


Illustration 6: BoWex® type FLE-PA

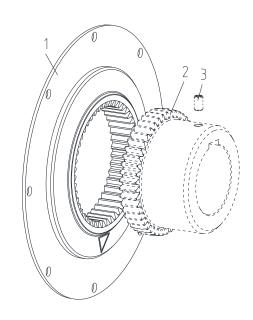


Illustration 7: BoWex® type FLE-PAC

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 9 of 16

Edition: 1

4 Assembly

4.3 Advice for finish bore

The maximum permissible bore diameters d (see table 1 or 3 in chapter 1 - technical data) must not be exceeded. If these figures are disregarded, the coupling may tear. Rotating particles may cause danger to life.

- Hub bores (steel hubs) machined by the customer have to observe concentricity or axial runout, respectively (see illustration 8).
- Please make absolutely sure to observe the figures for Ø d_{max}.
- · Carefully align the hubs when the finish bores are drilled.
- Please provide for a setscrew according to DIN EN ISO 4029 with a cup point or an end plate to fasten the hubs axially.

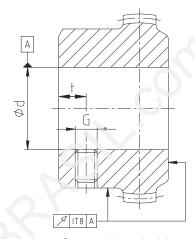


Illustration 8: Concentricity and axial runout

The customer bears the sole responsibility for all machining processes performed subsequently on unbored or pilot bored as well as finish machined coupling components and spare parts. KTR does not assume any warranty claims resulting from insufficient remachining.

Table 6: Setscrews DIN EN ISO 4029

Size	48 / T 48	T 55	65 / T 65	T 70	80 / T 80	100 / T 100	125 / T 125
Dimension G	M8	M8	M10	M10	M10	M12	M16
Dimension t	10	10	15 / 20 ¹⁾	15	20	30	40
Tightening torque T _A [Nm]	10	10	17	17	17	40	80

Length of hub 55 mm with t = 15 mm, 70 mm with t = 20 mm

Table 7: Recommended fit pairs acc. to DIN 748/1

Во	re [mm]	Shaft tolerance	Bore tolerance	
above	up to	Silait tolerance	Bore tolerance	
	50	k6	H7	
50		m6	(KTR standard)	

If a feather keyway is intended to be used in the hub, it should correspond to the tolerance ISO JS9 (KTR standard) with normal operating conditions or ISO P9 with difficult operating conditions (frequently alternating torsional direction, shock loads, etc.).

The transmissible torque of the shaft-hub-connection must be reviewed by the customer and is subject to his responsibility.

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 10 of 16

Edition: 1

4 Assembly

4.4 Assembly of hub

We recommend to inspect bore, shaft, keyway and feather key for dimensional accuracy before assembly.

Heating the hubs lightly (approx. 80 °C) allows for easier mounting onto the shaft.

Touching the heated hubs causes burns. Please wear safety gloves.

- Shift the hub (component 2) onto the shaft of the driven side and align accordingly.
- Fasten the coupling hub by tightening the setscrew DIN EN ISO 4029 via a cup point (tightening torque T_A see table 6).

4.5 Assembly of spline hub

We recommend to inspect spline bore and shaft for dimensional accuracy before assembly.

- Shift the hub (component 2) onto the shaft of the driven side and align accordingly.
- Fasten the coupling hub by a proper end plate with a screw.

4.6 Assembly of clamping hub or clamping hub N

We recommend to inspect spline bore and shaft for dimensional accuracy before assembly.

- Lightly unscrew the clamping screw or setscrews.
- Shift the hub (component 2) onto the shaft of the driven side and align accordingly.
- Tighten the clamping screw or setscrews at the tightening torques specified in table 8 or 9.

Table 8: Clamping hub with clamping screws DIN EN ISO 4762

Size	48/ T 48	T 55	65 / T 65	T 70	80 / T 80	100 / T 100	125 / T 125
Dimension M	M10	M12	M12	M12	M16	M16	M20
Tightening torque T _A [Nm]	49	86	86	86	210	210	410

Table 9: Clamping hub N with setscrews DIN EN ISO 4028

Size	T 70	80	100 / T 100	125 / T 125
Dimension G₁	M14	M16	M16	M16
Tightening torque T _A [Nm]	70	120	120	120

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 11 of 16

Edition: 1

4 Assembly

4.7 Assembly of the flange

• Shift the flange (component 1) into the centering of the flywheel.

• Short mounting

If you require short mounting, the side with marking 1 must be visible when being mounted (illustration 9)

• Long mounting

If you require long mounting, align the flange such that the marking is visible (illustration 10).

Make sure the alignment of the flange is correct.

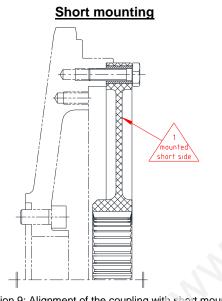


Illustration 9: Alignment of the coupling with short mounting (Example: BoWex® FLE-PA)



Illustration 10: Alignment of the coupling with long mounting (Example: BoWex® FLE-PA)

- Hand-tighten the flange to the flywheel first.
- Tighten the screws with a suitable torque key at the tightening torques T_A specified in table 10 or 11.
- Secure the screws against working loose by means of an adhesive (e. g. Loctite 243).

Please observe the manufacturer's instructions regarding the use of adhesives.

Table 10: Screw tightening torques for screwing the flange with nylon connection to the engine flywheel

Size of flywheel according to SAE J620d	6 ½"	7 ½"	8"	10"	11 ½"
Screw size	M8			M10	
Tightening torque [Nm]	2	5	49		
Minimum screw strength			8.8		
Inch screw	5/16	- 18		3/8 - 16	
Tightening torque [Nm]	24		42		
Minimum screw strength	5				

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 12 of 16

Edition: 1

4 Assembly

4.7 Assembly of the flange

Table 11: Screw tightening torques for screwing the flange with steel connection to the engine flywheel

Size of flywheel according to SAE J620d	6 ½"	7 ½"	8"	10"	11 ½"	14"
Screw size	M8			M10		
Tightening torque [Nm]	35		69			120
Minimum screw strength			10.9			
Inch screw	5/16 - 18		3/8 - 16			1/2 - 13
Tightening torque [Nm]	33		62			150
Minimum screw strength	8					

• Shift the power packs in axial direction until the mounting dimension I₃ or I₇ (table 1 or 3) has been achieved.

With the assembly please make sure that the spline of the hub is fully covered by the internal spline of the flange. (Please observe mounting dimensions I_3 or I_7 .) Disregarding this advice may cause damage to the coupling.

 If the power packs are already firmly assembled, shifting the hub axially on the shaft allows for setting the distance dimension.

4.8 Displacements - alignment of the couplings

The **BoWex**[®] flange couplings compensate for positional deviations of the machine components to be connected up to the data specified in table 12.

With alignment, the radial and angular displacement should be kept as small as possible, because the service life is increased in this way if the operating conditions are otherwise maintained.

The **BoWex**[®] flange coupling has to be aligned from the coupling hub on the shaft side towards one of the unmachined surfaces of the flywheel or machine.

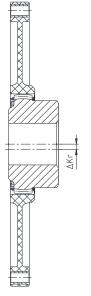
In order to ensure a long service life of the coupling, the shaft ends have to be accurately aligned. Please absolutely observe the displacement figures specified (see table 12). If the figures are exceeded, the coupling will be damaged.

The more accurate the alignment of the coupling, the longer is its service life.

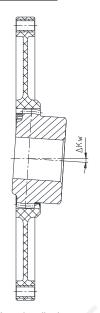
Please note:

- The displacement figures specified in table 12 are maximum figures which must not arise in parallel. If radial and angular displacements arise at the same time, the permissible displacement values may only be used proportionally (see illustration 12).
- The displacement figures specified are general standard figures that apply up to an ambient temperature of 80 °C, ensuring a sufficient service life of the **BoWex**® coupling.
 - Displacement figures between the speeds specified have to be interpolated accordingly. If necessary, please ask about the displacement for the corresponding coupling type.
- Please inspect with a dial gauge, ruler or feeler gauge whether the permissible displacement figures specified in table 12 can be observed.

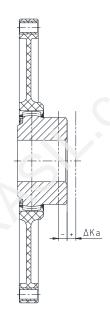
Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:



KTR-N Sheet: 40117 EN 13 of 16


Edition: 1

4 Assembly


4.8 Displacements - alignment of the couplings

Angular displacement

Axial displacement

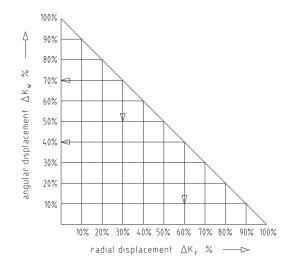
Illustration 11: Displacements

Examples of the displacement combinations specified in illustration 12:

Example 1:

 $\Delta K_r = 30 \%$

 $\Delta K_w = 70 \%$


Example 2:

 $\Delta K_r = 60 \%$

 $\Delta K_w = 40 \%$

 $\Delta K_{total} = \Delta K_r + \Delta K_w \le 100 \%$

lilustration 12: Combinations of displacement

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 14 of 16

Edition: 1

4 Assembly

4.8 Displacements - alignment of the couplings

Table 12: Displacement figures

Size	Perm. axial displacement ΔK_a [mm]	Perm. radial displacement ΔK_r [mm]	Perm. angular displacement ΔK _w [Degree]
		Type FLE-PA	Zi w [209:00]
48	± 2	0.3	± 0.9
T 48	± 1	0.3	± 0.7
T 55	± 2	0.3	± 0.7
65	± 2	0.3	± 0.7
T 65	± 1	0.3	± 0.5
T 70	± 2	0.3	± 0.6
80	± 2	0.3	± 0.6
T 80	± 1	0.3	± 0.4
100	± 2	0.4	± 0.6
T 100	± 1	0.4	± 0.4
125 / T 125	± 2	0.5	$\pm 0.4 / \pm 0.3$
	Т	ype FLE-PAC	
48 / T 48	± 3	0.3	± 0.9 / ± 0.7
65 / T 65	± 3	0.3	± 0.7 / 0.5
80 / T 80	± 3	0.3	± 0.6 / ± 0.4
100 / T 100	± 3	0.4	± 0.6 / ± 0.4
125 / T 125	±3	0.5	± 0.4 / ± 0.3

5 Start-up

Before start-up of the coupling, please inspect the tightening of the setscrews in the hubs, the alignment and the distance dimension I3 or I7 and adjust, if necessary, and also inspect all screw connections for the tightening torques specified.

Finally the coupling protection against accidental contact must be fitted.

The cover must be electrically conductive and included in the equipotential bonding. The cover may only be taken off with standstill of the unit.

During operation of the coupling, please pay attention to

- · different operating noise
- · vibrations occurring.

The minimum distance "Sr" between the protective device and the rotating parts must at least correspond to the figures specified below.

Openings	Cover [mm]				
Openings	Top side	Lateral components	Distance "Sr"		
Circular - max. diameter	4	8	≥ 10		
Rectangular - max. lateral length	4	8	≥ 10		
Straight or curved slot - max. lateral length/height	not permissible	8	≥ 20		

If you note any irregularities with the coupling during operation, the drive unit must be switched off immediately. The cause of the breakdown must be specified by means of the table "Breakdowns" and, if possible, be eliminated according to the proposals. The potential breakdowns mentioned can be hints only. To find out the cause all operating factors and machine components must be considered.

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N 40117 EN 15 of 16 Sheet:

Edition: 1

Breakdowns, causes and elimination

The below-mentioned failures can result in a use of the **BoWex®** coupling other than intended. In addition to the specifications given in these operating and assembly instructions please make sure to avoid such failures. The errors listed can only be clues to search for the failures. When searching for the failure the adjacent components must generally be considered.

General failures with use other than intended:

- Important data for the coupling selection were not forwarded.
- The calculation of the shaft-hub-connection was not considered.
- Coupling components with damage occurred during transport are assembled.
- If the heated hub is assembled, the permissible temperature is exceeded.
- The clearance of the components to be assembled is not coordinated with one another.
- Tightening torques have been fallen below/exceeded.
- Components are mixed up by mistake/assembled incorrectly.
- No original KTR components (purchased parts) are used.
- Old/already worn out flanges or flanges stored for too long are used.
- Maintenance intervals are not observed.

Breakdowns	Causes		Elimination
Different operating noise and / or vibrations occuring	Micro friction by faulty alignment on the spline of the flange	1) 2)	Set the unit out of operation Eliminate the reason for the misalignment (e. g. loose foundation bolts, breaking of the engine mount, thermal expansion of unit components, modification of the installation dimension I3 and I7 of the coupling)
	Screws for axial fastening of hubs working loose	1) 2) 3)	Set the unit out of operation Inspect alignment of coupling Tighten the screws to fasten the hubs and secure against working loose
Fracture of flange / spline	Fracture of flange / spline caused by high dynamic energy / overload	1) 2) 3) 4) 5)	Set the unit out of operation Disassemble the coupling and remove remainders of the flange Inspect coupling components and replace coupling components that are damaged Insert flange, assemble coupling components Find out the reason for overload
10,80	Operating parameters do not meet with the performance of the coupling	1) 2) 3) 4)	Set the unit out of operation Review the operating parameters and select a bigger coupling (consider mounting space) Assemble new coupling size Inspect alignment
Fracture of flange / spline	Operating error of the unit	1) 2) 3) 4) 5)	Set the unit out of operation Disassemble the coupling and remove remainders of the flange Inspect coupling components and replace coupling components that are damaged Insert flange, assemble coupling components Instruct and train the service staff

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by:

KTR-N Sheet: 40117 EN 16 of 16

Edition: 1

6 Breakdowns, causes and elimination

Breakdowns	Causes		Elimination
	Vibrations of drive	1) 2) 3)	Set the unit out of operation Disassemble the coupling and remove remainders of the flange Inspect coupling components and replace coupling components that are damaged Insert flange, assemble coupling components
		5) 6)	Inspect alignment, adjust if necessary Find out the reason for vibrations
Excessive wear on the spline of flange	Ambient/contact temperatures which are too high for the nylon flange, max. permissible e. g. 130 °C	1) 2) 3) 4) 5) 6)	Set the unit out of operation Disassemble the coupling and remove remainders of the flange Inspect coupling components and replace coupling components that are damaged Insert flange, assemble coupling components Inspect alignment, adjust if necessary Inspect and adjust ambient/contact temperature
	e. g. contact with aggressive liquids/oils, ozone influence, too high/low ambient temperatures etc. causing physical modification of the flange	1) 2) 3) 4) 5) 6)	Set the unit out of operation Disassemble the coupling and remove remainders of the flange Inspect coupling components and replace coupling components that are damaged Insert flange, assemble coupling components Inspect alignment, adjust if necessary Make sure that other physical modifications of the flange are excluded

7 Disposal

In respect of environmental protection we would ask you to dispose of the packaging or products on termination of their service life in accordance with the legal regulations and standards that apply, respectively.

Metal

Any metal components have to be cleaned and disposed of by scrap metal.

Nylon materials

Nylon materials have to be collected and disposed of by a waste disposal company.

8 Spares inventory, customer service addresses

A basic requirement to ensure the readiness for use of the coupling is a stock of the most important spare parts on site.

Contact addresses of the KTR partners for spare parts and orders can be obtained from the KTR homepage at www.ktr.com.

KTR does not assume any liability or warranty for the use of spare parts and accessories which are not provided by KTR and for the damages which may incur as a result.

Please observe protection	Drawn:	2016-09-30 Kb/Eh	Replacing:
note ISO 16016.	Verified:	2016-10-18 Kb	Replaced by: